Data-Driven Diagnosis of Heart Disease
نویسندگان
چکیده
منابع مشابه
Improving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملDiagnosis of Heart Disease Using Binary Grasshopper Optimization Algorithm and K-Nearest Neighbors
Introduction: The heart is one of the main organs of the human body, and its unhealthiness is an important factor in human mortality. Heart disease may be asymptomatic, but medical tests can predict and diagnose it. Diagnosis of heart disease requires extensive experience of specialist physicians. The aim of this study is to help physicians diagnose heart disease based on hybrid Binary Grasshop...
متن کاملReview on Heart Disease Diagnosis Based on Data Mining Techniques
The availability of huge amount of data leads to the need of powerful data analysis tool to extract useful knowledge. To manage data analysis on large data sets researchers have long been concerned with statistical and data mining tools. Disease diagnosis is one of the major applications where data mining tools are showing successful results. Heart disease is the major cause of the death all ov...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2020
ISSN: 0975-8887
DOI: 10.5120/ijca2020920549